Skip to content

Scientists have Produced the First Complete Genome Sequence of the Tsetse Fly

The tsetse fly is a strange and fascinating creature in the insect world. It feeds exclusively on the blood of humans and animals, and instead of laying eggs, it gives birth to live young and provides nutrition to them through lactation — something that is normally associated with mammals, not insects.

However, the fly is also deadly. The blood-sucking insect is the sole transmitter of the parasite that causes trypanosomiasis, also known as sleeping sickness. If left untreated, the disease is fatal. No vaccine has yet been developed and current drug treatments have unwanted side effects.

An estimated 70 million people throughout sub-Saharan Africa are at risk for trypanosomiasis. And because the disease also affects animals, rearing livestock in endemic areas is difficult to impossible, resulting in several billions of dollars in lost agricultural output each year. Snuffing out the tsetse fly, the disease’s one-and-only vector, has long been a public health priority.

Now a decade-long effort by members of the International Glossina Genome Initiative (IGGI) has produced the first complete genome sequence of the tsetse fly, Glossina morsitans. This vast store of genetic data will help researchers develop new ways to prevent sleeping sickness and provide insights into the tsetse fly’s unique biology.

The IGGI researchers’ goal was to identify the genes in the tsetse fly’s genome that code for proteins and then to link those genes to their corresponding biological function, a process called annotation. Proteins are the “parts list” of an organism, and they are involved in every aspect of its structure and function.

“In a first phase of the project, we used computers to automatically annotate the genetic sequence of the tsetse fly and compared it with the sequences of similar species with known genomes, such as the fruit fly,” said Geoffrey Attardo, a lead author of the study. “The computers flagged segments of genetic material in the tsetse fly’s genome known to code for proteins in other species and used this data to predict the tsetse fly’s gene structure and function.”

Teams of IGGI scientists then manually examined the automated annotations. Doctoral researcher Jelle Caers and Professor Liliane Schoofs worked for two years in the IGGI group studying the tsetse fly’s neuropeptide signalling genes.

“We annotated 39 neuropeptide genes and 43 receptor genes,” said says Jelle Caers. “Neuropeptides regulate most if not all physiological processes, including feeding, reproduction, metabolism, water balance and behavior. In that sense, unravelling the tsetse fly’s neuropeptide systems undoubtedly contributes to a better understanding of its overall biology.”

Knowledge about neuropeptides may hold the key to controlling tsetse populations and eventually eradicating sleeping sickness.

“Neuropeptides are promising targets for the development of new, environmentally-safe insecticides because they regulate all of the tsetse fly’s crucial processes,” said Caers. “Interfering with neuropeptides’ proper functioning may allow us to decrease the fly’s fitness and thereby shrink populations. There is still more work to be done before trypanosomiasis is eradicated in humans and animals, but decoding the tsetse genome is a big step in the right direction.”

The study was published today in the journal Science.

Read more at:

Genome Sequence of the Tsetse Fly (Glossina morsitans): Vector of African Trypanosomiasis

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.