Skip to content

Eavesdropping Bees Encouraged by “Whispers,” Deterred by “Shouts”

Photo by Alexander Wild. http://www.alexanderwild.com

If you’re a bee and you’ve spotted a new and particularly lucrative source of nectar and pollen, what’s the best way to communicate the location of this food to your nestmates without revealing it to competitors?

Some animals are thought to deter eavesdroppers by making their signals less conspicuous to outsiders — they’ve evolved “whispers” in their signals to counter eavesdropping.

But some species of bees in Brazil do the exact opposite. “Shouts” in their food-recruitment signals warn would-be competitors that their prime source of food will be fiercely defended if they show up to the site. It’s a communication strategy that’s bold and risky, yet remarkably successful in warding off competitors, according to a paper published in the journal Current Biology.

“Researchers have in general thought about eavesdropping as a force that makes signals less conspicuous, leading to the evolution of ‘whispers’ to counter spying,” said James Nieh, a professor of biology at UC San Diego who oversaw the research study conducted in Brazil by Elinor Lichtenberg, a PhD student in his laboratory who is now a postdoctoral researcher at Washington State University. “However, we show that eavesdropping can also lead to ‘shouts.’ In this stingless bee system, with aggressive colonies jockeying for limited resources, more conspicuous food-recruitment signals indicate a higher likelihood that a resource will be harder to wrest away. It’s a signal with honest aspects and the possibility of lies. It tells nestmates where to find good food, and hints at a larger occupying force.”

The study focused on stingless bees that compete with one another for similar food sources, including two from the genus Trigona that recruit nestmates to food sources with chemically distinct pheromones. Trigona hyalinata spies that detect food sources marked by Trigona spinipes foragers will often displace Trigona spinipes from desirable sites in the wild if they can recruit sufficient nestmates. But Lichtenberg found in a controlled field study that the Trigona hyalinata eavesdroppers will avoid desirable sources of food that have larger numbers of pheromone markings at the site, which indicates larger numbers of T. spinipes and stronger chances of being attacked. However, T. hyalinata foragers ARE attracted to food sources that have been marked by fewer T. spinipes foragers.

The eavesdroppers could take over the highly visited sites by recruiting more of their nestmates or battling with T. spinipes bees — which show high levels of aggression toward intruders — but the risks and energy costs to the eavesdroppers apparently aren’t worth the trouble.

The researchers supported this hypothesis by modeling eavesdropping bees’ decision-making, using a type of model from economics. They ran the model for T. hyalinata eavesdropping on T. spinipes, T. spinipes on T. hyalinata, and the non-aggressive Melipona rufiventris on T. spinipes. In all three cases, they found that the model results matched eavesdropping behavior measured in this study and in previous work by Lichtenberg, Nieh, and colleagues.

“Assembling such a group in the nest after having found a food source through eavesdropping uses time and energy the eavesdropper could otherwise spend looking for an unoccupied food source,” said Lichtenberg. “If the eavesdropper brings too small a group to an occupied food source and cannot win access to it, she and the bees accompanying her have essentially wasted energy. For attacks between colonies of the same species, there is also a risk that the conflict will escalate to physical interactions in which large numbers of bees may die.”

“Our study is one of the first to investigate what drives the behavior of eavesdroppers collecting information from competitors within the same trophic level, which use the same food resources as the eavesdropper,” she added. “Previous eavesdropping research has mainly focused on individuals seeking mates, predators looking for prey, or prey trying to avoid being eaten. In those cases, eavesdroppers’ expected behavior is clear. This is not true for eavesdropping on competitors.”

The study not only provides information about the evolution of different strategies of animal communication, but suggests how these strategies can affect the ecology of plant communities. “Such strategies affect not only the individuals directly involved, but also broader ecological interactions between the food-gatherers and their food,” Lichtenberg said. “This is particularly important for animals such as the bees I studied, because their movements determine plant pollination.”

Read more at:

Eavesdropping selects for conspicuous signals

1 Comment »

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.