Skip to content

Nicotine and Other Natural Chemicals Protect Bees from Parasites

https://entomologytoday.org/wp-content/uploads/2015/09/bumble-bee-susan-ellis.jpg

Bumble bees infected with a common intestinal parasite are drawn to flowers whose nectar and pollen have a medicinal effect, a new study shows. The findings, soon to be published in the journal Ecology, suggest that plant chemistry could help combat the decline of bee species.

The researchers previously found in lab studies that nectar containing nicotine and other natural chemicals in plants significantly reduced the number of parasites in sickened bees, but the new study shows parasitized bees already are taking advantage of natural chemicals in the wild.

Parasites are a common natural cause of disease in bumble bees and honey bees, both of which play a vital role in agriculture and plant pollination. The intestinal parasite the researchers looked at can strongly affect their survival, reproduction, and foraging behavior.

The researchers studied the effects of a group of plant secondary metabolites found naturally in floral nectar — iridoid glycosides — on bumble bee foraging and plant reproduction. Iridoid glycosides can deter deer and other herbivores, but the researchers’ earlier studies showed the compounds have a medicinal effect on parasitized bees by reducing their parasite load.

In the new study, the researchers looked at concentrations of two iridoid glycoside compounds, aucubin and catalpol, in nectar and pollen in four populations of turtlehead, a bee-pollinated wetland plant found throughout eastern North America. They then manipulated concentrations of the chemicals in those flowers to study their effects on bee foraging.

The results showed that relative to healthy bees, those infected with the intestinal parasite greatly preferred visiting flowers with the highest iridoid glycoside concentrations. Bees attacked by a second antagonist, a parasitoid fly, did not respond in this way to nectar chemistry. The researchers also found that flowers with the highest concentrations of nectar iridoid glycosides donated significantly more pollen to other flowers following bee visits, showing that nectar chemistry can affect plant reproductive success.

“Secondary metabolites are commonly present in floral nectar and pollen, yet their functions are not well understood,” said lead author Leif Richardson, a former Dartmouth graduate student now at the University of Vermont. “In this study, we show that these compounds could influence plant reproduction via complex suites of interactions involving not only pollinators but also their natural enemies.”

Senior author Rebecca Irwin, a former Dartmouth faculty member now at North Carolina State University, said, “We show that bees might be able to self-medicate, altering their foraging behavior when parasitized so as to maximize their consumption of beneficial plant secondary metabolite compounds.”

3 Comments »

  1. This is in support of the theory that bee hives are collapsing in mono-culture farming due to the fact that the variety needed to combat deficiencies are not available resulting in hive collapse.
    If the bees have a wide variety of Choices they can self-medicate, which may explain a subtle reason for the collapses without showing outward signs of disease or malnutrition.

  2. If nicotine is so beneficial to honey bees for dealing with intestinal parasites, why are neonicotinoids thought to be so harmful to foraging behavior and contributing to colony collapse disorder.

    • Good point they are wrong about these neonicotinoids as causes for “collapse disorder”. The collapses will not be solved by identifying specific identifiable substances. Its basis lies in the sub-atomic level of nutrition caused by mono cultures. Eliminate the mono culture farming and you solve the bee hive, “collapse disorder” problem and without needing to know its specific cause or causes.

Leave a Reply (Comments subject to review by site moderator and will not publish until approved.)

This site uses Akismet to reduce spam. Learn how your comment data is processed.