Skip to content

Propolis Power-Up: How Beekeepers Can Encourage Resin Deposits for Better Hive Health

honey bee propolis

Propolis is a pliable, resinous mixture that honey bees (Apis mellifera) create by mixing a variety of plant resins, saliva, and beeswax and which they apply to interior surfaces of their hives, namely at points of comb attachment and to seal up cracks and crevices on the interior side of hive walls. Greater propolis production is connected with improved hive health, and a new study finds a few simple methods beekeepers can employ to stimulate increased propolis production. (Photo credit: Flickr/Ontario Beekeepers’ Association Tech Transfer Program, CC BY-NC-ND 2.0)

By Andrew Porterfield

Propolis, a mass of plant resins built by honey bees inside their hives, has drawn attention in recent years partly because of its alleged (but as yet unproven) health benefits to humans. But, perhaps more important, it also shows health benefits to bees themselves. Created from resins and other oils and fats collected from trees, propolis helps preserve the structural integrity of a bee hive and protects against wood decay, fungus, and water.

Andrew Porterfield

Propolis has also been connected to benefiting honey bee (Apis mellifera) immune systems, saving energy that would otherwise have been used to protect against nest-invading beetles like Aethina tumida or parasites like the Varroa destructor mite, Nosema fungus, and viruses. In the past, some beekeepers have tried to keep their hives “clean” of propolis, believing it impeded with honey-making activities. Today, though, scientists and beekeepers have begun looking at encouraging propolis production to help sustain healthy hives.

In a new study published today in the Journal of Economic Entomology, three researches—Cynthia Hodges, master beekeeper and co-owner of Hodges Honey Apiaries in Dunwoody, Georgia; Keith Delaplane, Ph.D., entomology professor at the University of Georgia; and Berry Brosi, Ph.D., associate professor of environmental science at Emory University in Atlanta—looked at four different ways to enhance propolis growth in bee hives. The team found that three surface modifications—plastic trap material on the hive wall interior, parallel saw cuts on hive wall interior, and brush-roughened wall interiors—were all equally capable of resulting in increased propolis production, compared to a fourth method, a control, in which the hive wall interiors we left unmodified.

The researchers divided 20 colonies into five apiary sites and randomly applied one of the three texture treatments or control to each colony. Bees in the colonies foraged for propolis resins from plants common to the Appalachian Piedmont in the southeastern U.S., including conifers, oaks, pecan, red maple, yellow poplar, and urban ornamental plants. The researchers then measured extensiveness and depth of propolis deposits in the hives over time.

bee hive interior wall textures

Researchers in Georgia tested three different ways to texturize the interiors of honey bee (Apis mellifera) hive walls to stimulate production of propolis: at left, plastic propolis traps are attached to the walls; at center, walls are modified with five parallel saw kerfs, 7 centimeters apart, cut 3 millimeters deep into the surface; and, at right, walls are roughened with a mechanized wire brush. All three treatments stimulated increased propolis production over smooth, unmodified walls. (Left image originally published in Borba et al 2015, Journal of Experimental Biology; center and right images originally published in Hodges et al 2018, Journal of Economic Entomology)

Their results showed that any hive interior treatment significantly increased propolis deposition compared to a non-treatment control. Sampling over time showed propolis hoarding and accumulation, as well. None of the texture treatments showed significantly different results from each other.

While all treatments resulted in more propolis deposition, the researchers point to the roughened interior of the hive walls as the best method for encouraging deposition. In fact, leaving lumber naturally rough, with no planning or sanding, would provide a simple and effective surface for boosting propolis, they write.

“We come down in favor of roughened or un-planed wood,” says Delaplane, “because, unlike the plastic trap, it will not subtract from the bee space engineered around the walls and combs. What you see in our pictures is the work of a steel brush. Naturally un-planed wood would be much rougher and, I would expect, even better at stimulating propolis deposition.”

Other researchers have shown that propolis development has a strong effect on the members of the bee hive. These other investigations have shown that interior walls painted with propolis extract resulted in colonies with lower bacterial loads and with worker bees that expressed lower levels of immune gene expression. Sustained activation of immune genes comes at an energy cost, which can result in a reduction in brood numbers and pose a threat to overall colony health. Further studies have shown that reduced immune activation (and therefore less energy spent on fighting infection) comes from reduced pathogen loads in high-propolis colonies and not from immune suppression by propolis.

“I don’t know of any beekeepers deliberately encouraging their bees to collect propolis,” says Delaplane, adding that many keepers in the past have tried to clear propolis from their hives. “But today we know that this bias is misdirected. I believe encouraging propolis deposition is one more thing beekeepers can do to partner with biology instead of ignore it.”

Andrew Porterfield is a writer, editor, and communications consultant for academic institutions, companies, and nonprofits in the life sciences. He writes frequently about agriculture issues for the Genetic Literacy Project. He is based in Camarillo, California. Follow him on Twitter at @AMPorterfield or visit his Facebook page.

4 Comments »

  1. I am new to beekeeping and hope to have my first hive in the spring. With an entomological background, this is wonderful information. Can you suggest any other articles that I should be aware of or good resources to prepare for this new adventure? Thank you

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.